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Introduction

The conformations and conformational changes of proteins
are vital to their function. While the underlying processes
responsible for such changes are ultimately quantum me-

chanical in nature, a complete modelling treatment of pro-
teins at this level is beyond the reach of current computing
technology. In this article, we describe a method, using a
novel parametrisation, for simulating (possibly large) con-
formational changes within a classical mechanics framework,
where quantum effects such as reactions at local sites pro-
vide a trigger for structural changes at the scale of the entire
protein.
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Abstract We present a variational approach for the simulation of large conformational changes of
proteins (including multiple protein chains/ligands) which takes advantage of their cross-linked  one-
dimensional nature, a structure which often occurs in civil engineering. Conformational changes are
computed by incremental  energy minimisation. We use an efficient finite element method for finding
equilibria of complexes composed of inter-linked chains; this method is based on recent advances in
the description of one-dimensional elasticity. Protein backbone elasticity, van der Waals repulsions,
hydrogen bonds and salt bridges are taken into account, together with user-defined geometric distance
constraints that may be imposed for purposes of simulating various binding processes based on chemi-
cal  knowledge. These computational methods have been integrated into a system, Proteinmorphosis,
which includes interactive visualisation. The conformational change of calmodulin upon peptide bind-
ing is examined as a first experiment. Allostery in hemoglobin, which consists of a cooperative oxygen
binding mechanism, is a second, more sophisticated, numerical experiment. Different modelling strat-
egies are designed to understand the allostery. The  results for both molecules are consistent with
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Using a macroscopic formulation of protein conforma-
tional changes, our modelling system Proteinmorphosis aims
at fast and interactive computation with large proteins, in
contrast to the very detailed, computationally intensive mi-
croscopic modelling. In many instances such a civil engi-
neering [a] description, with its interactive flexibility, may
be the most useful. The protein chain is viewed as a struc-
tural frame: a one-dimensional, elastic object with cross-link-
ing interactions due to hydrogen bonds, salt bridges and di-
sulphide bridges, in addition to the important ‘excluded vol-
ume’ van der Waals interactions. It is well known that the
excluded volume effect is one of the most important deter-
minants of protein structure. In this structural view, such in-
tra-chain interactions act to determine conformation by act-
ing on the protein backbone. The elastic properties of the
backbone may be described in a manner analogous to the
one-dimensional elasticity of thin rods [1, 2]. The protein
backbone usually has a geometrically constrained set of de-
grees of freedom; while torsional angles can typically un-
dergo large changes, bond angles and bond lengths along the
backbone change very little, and some bonds are very rigid.
Including breakable cross-links is equivalent to a nonlinear
frame structure in civil engineering. We approximate a lig-
and binding process adiabatically by pulling a small number
of points to prescribed interatomic distances, as a passage
through successive equilibria until the final conformation is
reached, under the action of appropriate intermolecular forces.
Our current focus is on modelling conformational changes in
the proteins calmodulin and hemoglobin. We also developed
a convenient approach for the visualisation of large, com-
plex proteins in a dynamic, interactive environment [3].

The model

Conformational change and allostery

Conformational changes occur when proteins interact with
other molecules. These changes largely affect the biological
functions of the proteins. Proteins may bind very tightly and
specifically to other proteins, generating large complexes;
and to nucleic acids, especially when controlling their repli-
cation and expression. In most cases, proteins interact with
smaller molecules or ligands. In some cases, only small con-
formational changes occur near the local region of the bind-
ing sites. In other cases, substantial changes of protein con-
formations upon ligand binding are observed with both local
movement and global rearrangement of subunits. Such con-
formational changes may help to maximise the interactions
between the protein and the ligand and to minimise interac-
tions with other components of the solvent.

The other role of protein conformational changes upon
ligand binding is to produce functional alterations at other
binding sites of the protein, as in allosteric proteins. Allos-
teric proteins control and coordinate chemical events in the
cell. The theory as published in [4] was concerned mainly
with cooperativity and feedback inhibition of enzymes. It says
that cooperative ligand binding at multiple sites may arise in
proteins with two or more conformations in equilibrium. It
predicts that such proteins are likely to have several subunits
symmetrically arranged, and that the conformations would
differ by the arrangement of the subunits and number and/or
energy of the bonds between them. In one conformation the
subunits would be constrained by strong bonds that would
resist the tertiary structure change needed for ligand binding.
This state is generally called the T (for tense) state. In the
other conformation, these constraints are relaxed, and the state
is called the R (for relaxed) state for. In the transition be-
tween them, the symmetry of the protein molecule is con-
served, so that the activity of all its subunits will be either
equally low or equally high. This arrangement has the ad-
vantage that no direct interaction occurs between the ligands
at distant binding sites and the regulatory metabolite which
controls its activity. Control is entirely due to a change of
protein conformation induced in the protein when it binds to
the appropriate allostery-inducing ligand.

Incremental energy minimisation

Our method for determining the conformational change is
one of incremental energy minimisation. We assume that,
before binding, both protein and ligand are in their folded
equilibrium conformations with the lowest energies. During
the binding process, hydrogen bonds and salt bridges are
breaking and forming, and other interaction energies are in-
troduced between the protein and the ligand. In the process,
the energy landscape (in terms of the total set of conforma-
tional degrees of freedom of the protein-ligand complex)
changes. If the time scale for equilibration is fast enough, the
overall conformation may be taken to be instantaneously an
equilibrium, or local minimum energy state, of this moving
energy landscape.

Thus, it is essential to find a stable pathway along which
the protein and the ligand change their conformations from
one low energy equilibrium state to another. For allosteric
proteins [4], this pathway becomes the stable transition be-
tween T state and R state with the alterations in quaternary
structures.

This is the conceptual underpinning of incremental en-
ergy minimisation. The binding process is modeled as the
incremental application of a set of distance constraints, with
the system correspondingly reaching a local, nearby energy
minimum. Throughout the process, due to the incremental
nature of the process, the system is never far from equilib-
rium, unless there are bifurcation points along the pathway
at which the energy function is catastrophic [5]. Such points,
if they exist, would show up as points where the Hessian

[a] This term  to describe the approach was coined by Profes-
sor George Rose of the Johns Hopkins University, who also
suggested this problem to us.
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(matrix of second derivatives) of the energy function fails to
be positive definite.

We first examine the possible degrees of freedom of pro-
tein molecules. A protein, to a first approximation, contains
fixed bond length, bond angles, and planar segments. Fig-
ure 1 shows two sequential segments in a protein chain with
vectors representing bonds between atoms and gray areas de-
noting planar regions. To this approximation, the only de-
gree of freedom in the figure are rotations between planar
segments, i.e. φ, ψ angles. Furthermore, every third bond along
the backbone is effectively rigid due to its partial double bond
character. The protein backbone thus possesses a set of rather
constrained degrees of freedom. In comparison to protein
backbone, the sidechains exhibit less flexibility and there-
fore may be treated as rigid attachments to appropriate back-
bone atoms.

The total energy of the protein-ligand complex is the sum
of their (backbone) elastic energy Eel and the interaction en-
ergy Eint (both within and across molecules). The elastic en-
ergy depends only on the shape (i.e., equivalence up to rigid
motion) of the backbone conformation (i.e., uniquely speci-
fied by the backbone torsional φ, ψ angles). The interaction
energies which arise are typically due to van der Waals
repulsions, hydrogen bonds and salt bridges and depend only
on the positions of all the atoms.

The protein-ligand complex phase manifold is M = Td,
where Td is a d-dimensional torus ( d = dp + dl + 6 and dp, dl
are numbers of torsional angles of the protein and the ligand,
respectively) and the total potential energy E: M → R is

( ) ( ) ( )

( ) ( ) ( )
E E E

E E E

el int

el p el l int p l r

x x x

x x x x x

= +

= + + , ,

where x = [xp xl xr] ∈ M. The elastic energy can be decoupled
into two parts Eel(xp) and Eel(xl) with xp ∈ Tp and xl ∈ Td

being free variables, which uniquely determine the confor-
mations of the protein and the ligand respectively. In con-
trast, the interaction energy Eint is fully coupled, depending
also on the relative position and orientation of the protein
and the ligand. The six degrees of freedom are captured by xr
∈ T6.

In an allosteric ligand binding process, there are only a
small number of equilibrium conformations. Without loss of
generality, we assume there are only two equilibrium, in fact
minimal energy, states: T and R states (the associated con-
formations are xT and xR). That is, we have

J(xT) = J(xR) = 0 (1)

and
H(xT) and H(xR) are positive definite, where J(•) denotes

the Jacobian and H(•) denotes the Hessian of the total poten-
tial energy. To study the conformational changes from T state
to R state, we need to find a trajectory from xT to xR.

When the ligand binds to the protein, there is a dynamical
process of breaking and forming of different sets of hydro-
gen bonds and salt bridges. It is also observed that there are
substantial charge redistributions around the binding sites.
The resulting equations are too difficult to solve on the com-
puter in a short time with the dynamical form of the interac-
tion energy. The only easy part of the interaction energy is
the van der Waals interaction which depends solely on the
position of all the atoms.

However, breaking and forming of hydrogen bonds and
salt bridges as well as charge redistributions mainly occur in
the transition period, especially at the bifurcation point when
the protein-ligand complex overwhelms the potential energy
barriers. These interactions do not change very much in the
local region of both T and R equilibrium conformation states.
van der Waals interactions play an important role in seeking
minimum energy states around those local regions.

Once in the local region of the equilibrium R state, the
elastic energy of the backbone, the potential energy of stable
cross-linking bonds and the van der Waals interaction energy
should be sufficient to locate the desired equilibrium. One
way to introduce an approximate interaction energy that pro-
vides a stable pathway between (local) equilibrium states is
to introduce an extra energy term based on a certain set of
distance constraints. This energy is applied incrementally as
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where nd is the number of distance constraints, l = [l1 l2…
l nd

] is the corresponding ideal distance set, λλλλλ=
diag(λ1 λ2…λnd

) is the stiffness constant set, and P is a dif-
ference operator such that x= [x1

1–x1
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Figure 1 Illustration of backbone torsion angles
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( ) ( ) ( )$E E Edisx, l x x, l= + (4)

Here λλλλλ is a vector of control parameters. The whole binding
process is divided into steps k = 1, 2, 3,…. The control pa-
rameter is also a monotonically increasing function of the
step k: 0 < λi(k) < λi(k+1), and λi(k) → ∞ if k → ∞, i=1,
2,…,nd.

The incremental energy minimisation starts from the ini-
tial equilibrium state T. Given a control trajectory λλλλλk, k=1,2,…,
we compute a phase trajectory mk ∈ M such that mk is a local
minimum of Êλk. Quadratic minimisation method is used to
calculate the local minimum at each step. Assuming xk is a
local minimum conformation at step k and the control pa-
rameter at step k+1 is λλλλλk+1=λλλλλk + δλλλλλk, we have

( ) ( ) ( )$ ,E E Ek k k dis k kx x x= + λ (5)

( ) ( ) ( )$ ,E E Ek k k dis k k+ += +1 1x x x λ (6)

The change of the equilibrium conformation δxk=xk+1–xk
is computed as

where n
x

x
=

P

P
k

k

Global parametrisation

The torsional angles provide a set of local coordinates for the
protein conformational change. A global set of coordinates,
in the sense of the translational and rotational displacement
of each atom, however, is more convenient for our purposes.

Therefore, it is useful to parameterise changes in the degrees
of freedom of protein chains using global coordinates and
determine the transfer matrix between local and global coor-
dinates.

As we mentioned before, there are only six torsional de-
grees of freedom for every three consecutive residues. If the
i-th backbone atom is fixed, the (small) translational and ro-
tational displacement of the i+10-th backbone atom is re-
lated to the increments of the intervening six torsion angles
by a transfer matrix.

Figure 2 shows three consecutive residues and the first
and the last backbone atoms are chosen as two nodal points.
Their positions are denoted as r i and r i+1 and their transla-
tional and rotational displacements are denoted as (δrT

i ; δθθθθθT
i)

and (δr T
i+1; δθθθθθT

i+1). Similarly, position and orientation
displacements of the j-th backbone atom are written as (δpT

j;
δβT

j). Denoting the nine torsion angles and their changes as
αj and δαj, j=1,2,…,9, we have
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where vj,k is the vector from backbone atom j to k. Writing uj
= vj/|vj| and dj = uj × vj,10, we have
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Here, the skew symmetric matrix Vi corresponds to the
vector v1,10 – to every vector a, we may associate a skew
symmetric matrix written in terms of components of a as
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For general values of vj,k, each Ai is stably invertible. If it
is not, we must replace each singular or nearly singular Ai
with a geometrically regularised version
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Figure 2 Parametrisation of backbone degrees of freedom,
in  local and global coordinates
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( )A U D I Vi
r = + σ

where σ > 0 is small and Ai = UDV is the singular value de-
composition of Ai so that Ar

i has 6 non-zero eigenvalues. Thus
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Ti , three rows of zeros are inserted and we have the cor-

responding transfer matrix Ti.
For each backbone atom pj, its position and orientation

displacements are given in terms of changes in the nodal point
degrees of freedom by a transfer matrix Tb

j:
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Here, dk,j = uk × vk,j+1 and the skew symmetric matrix Vi,j
is associated with the vector v1,j+1. Assuming each sidechain
is rigidly attached to the corresponding backbone alpha car-
bon, we have
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where vs
j is the vector from the backbone atom pj to the

sidechain atom ps
j.

With the above derivation of the transfer matrices for both
backbone atoms and sidechain atoms with respect to the nodal
points along the backbone chain, it is easy to assemble them
together to form one total transfer matrix. Supposing the to-
tal number of atoms to be n and the number of nodal points
to be m, we have

∆ ∆P T R= (9)

where the 6n × 1 vector ∆P contains the translational and
rotational (small) displacements of all the atoms, the 6m × 1
vector ∆R is the displacements of the nodal points, and T is a
6n × 6m global transfer matrix. The atoms and nodal points
are arranged in the same order as in the protein polypeptide
chain. Within each residue, the order of atoms is as follows:
nitrogen, alpha carbon, carbon, oxygen, and sidechain atoms.
It is obvious that the global transfer matrix T is block diago-
nal with each block of size 6mi × 12, where mi is the number
of atoms in the i-th residue.

Potential energy functions

The incremental energy minimisation method used in our
civil engineering model is a quasistatic approach, i.e., the
total energy in each step only contains potential energy but
not kinetic energy. The total potential energy is assumed to
be a function of the number and type of chemical species
within the protein molecule and the distance between all pairs
of atoms. To calculate the potential energy, it is divided into
a number of terms which correspond to physical effects, which
is the force field [6, 7]. We use standard forms of the various
potential energy functions [6], except for the torsion poten-
tial energy, for which we use a quadratic form rather than the
more commonly used cosine form (see equation(11) and the
description following it); there is no special parameter ad-
justment in the simulations. We also use explicit potentials
for hydrogen bonds and salt bridges [8], which some force
fields do not employ.

In this paper, we assume the bond lengths and bond an-
gles are fixed and the backbone torsional potential Etor is the
only contribution to the backbone elastic energy Eel. The in-
teraction energy Eint contains van der Waals interaction ener-
gies EvdW and hydrogen bond or salt bridge potentials EH.
Electrostatic potentials are not treated in this paper.

Thus, the total potential energy has the following form

( ) ( ) ( ) ( ) ( )$ , ,E E E E Etor vdW H disx x x x xλ λ= + + +

Below, we will more specifically discuss each of these
potential energy terms. We also need to evaluate the Hessian
H and the Jacobian J of the total potential energy Ê in order
to do the quadratic energy minimisation (7) at each step. The
Hessian is also referred to as the stiffness, denoted by K, be-
cause it reveals the force-displacement relationship
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Similarly, the term load is often used to denote the nega-
tive Jacobian Lº–J(x). Rotations about bonds are described
as torsion or dihedral angles, which are as usual taken to lie
in the range –180° to +180°. Rotations about the N–Cα bond
and about the Cα–C’ bond of the peptide backbone are de-
noted by the usual φ and ψ angles. As mentioned earlier, due
to the partial double bond character of the protein peptide
chain, the torsion angle ω is almost rigid. The most com-
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monly used form of the torsion angles potential is the Pitzer
potential:

( )[ ]E
V

ntor
i

i i i
i

= + −∑ 2
1 cos φ γ (10)

where Vi gives the energy barrier to rotation of the i-th tor-
sion angle, γi is the reference angle where the torsional po-
tential energy is a maximum and ni is the multiplicity, that is,
the number of potential minima in one full rotation.

However, it is found that the Pitzer potential is insuffi-
cient to give a full representation of the energy barriers of
torsion angle change. The nature of torsional potentials is
not fully understood and there is even some dispute about the
periodicity and location of the energy minima of these func-
tions [9]. High-level quantum mechanical data are now avail-
able on the conformational energies of the glycyl and alanyl
dipeptides [6] which help to develop φ and ψ torsion param-
eters for the peptide backbone.

We use a simple harmonic form for φ and ψ torsional po-
tentials in this paper; these angles lie in the –180° to 180°
range from their respective references:

( )E ktor tor i i

torsions

= −∑ 1

2
2φ γ (11)

where k_tor is the torsion constant. We use a value of ktor=14
kcal/mole and use for γi the value taken by the corresponding
torsion angle in the original conformation of the protein. We

find computationally that the original conformation for the
proteins we model here is in a state very close to equilibrium
with the (full set of) potential choices we have made.

The multiplicity in the torsional potential (10) is at least
in part handled in our model by the inclusion of non-bonded
van der Waals interactions with all of the surrounding non-
bonded atoms. The torsion and non-bonded interactions are
highly coupled (see, for instance, [10]) and we find that the
existence of the energy barrier present in the standard peri-
odic form of the potential is reproduced in our approach as
well.

With the above harmonic form of the torsional potential,
it is easy to derive the corresponding stiffness matrix. Since
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nodal atom i and i+1 is a 12 × 12 matrix
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where $K k Itor
i

tor= .

Van der Waals interactions, which represent the excluded
volume effect, as well as weak inter-molecular attractions,
are described by a Lennard-Jones potential of the form:
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Figure 3 Contour plot of the
transformation matrix T used
in the calmodulin peptide
binding example
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where r=|xi – xj| and R is the summation of the van der Waals
radii of the two atoms. Then
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The total van der Waals stiffness becomes
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where T is the transformation matrix discussed in the previ-
ous subsection.

It is computationally far too expensive to calculate the
van der Waals interactions between all pairs of the atoms as
the increase in computing time is of O(n2) where n is the
total number of atoms. To reduce computing time, a cutoff
radius Rcut is used, outside of which the van der Waals inter-
actions are considered to be negligible and therefore not in-
cluded. For most cases, we are more interested in the ex-
cluded volume effect, i.e. the van der Waals repulsion, and
thus the cutoff radius is chosen to be the sum of the van der
Waals radii of the two interacting atoms. The calculation of
the van der Waals interactions then becomes a collision de-
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Figure 4 Contour plot of the stiffness matrices used in the calmodulin peptide binding example: (a) Ktor; (b) KH; (c) KvdW;
(d) K
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tection problem. In the appendix, we provide an efficient (lin-
ear in time and space) algorithm to detect collisions when
each atom in the protein molecule can be approximated as a
sphere with radius equal to its van der Waals radius. Similar
algorithms are used in the molecular dynamics literature.

We use the following (4,8) Lennard-Jones potential for
the hydrogen bond:

E
A

r

B

r
H
ij = −0

8
0
4 (18)

where r=|xi–xj|.
For salt bridges, we use the same form of the potential

functions except for different selections of the two param-
eters A0 and B0. Currently all hydrogen bonds and salt bridges
are specified in the beginning of the modelling in order to
preserve desired secondary structures as well as the interac-
tions between different subunits (in, say, a tetramer as in
hemoglobin).

In a full computational scheme for ligand binding, we
would very carefully choose a force field that has accurate
interaction potentials. In this more modest treatment, we fo-
cus on allostery, i.e. we assume ligand binding is known, and
examine its effects on protein conformation. We do this by

introducing distance constraint potentials between pairs of
atoms at xi and xj of the form

( )Edis
ij

ij i j ij= − −
1

2

2
λ x x l (19)

where l ij > 0 is the ideal distance and λij is the control param-
eter. The total stiffness is just the summation of the indi-
vidual stiffness matrices:

K K K K Ktor vdW H dis= + + + (20)

Variational methods

The energy minimisation problem formulated in the last sec-
tion is to compute a phase trajectory given a control trajec-
tory. In addition to the distance constraints we introduced in
order to approximate the dynamical interaction potentials, it
is also possible to have other (linear) constraints. For exam-
ple, we may like to fix some atoms in the protein-ligand com-
plex, or make some sub-structures rigid. Such constraints are
usually incrementally linear and can be written as Bx = c.
Thus, under general assumptions, the energy minimisation
problem reduces to a sequence of linearly constrained quad-
ratic minimisation (LCQM) problems. We use k as the index
of the LCQM steps and k=1,2,…. At each step k, assume xk
is an equilibrium conformation so that we have (5), and
Bxk = c. Applying an increment of the distance constraint en-
ergy, δEdis(xk, δλλλλλk), the total energy becomes (6) and xk is no
longer an equilibrium conformation because the Jacobian of
the total energy at xk, is not zero. The new equilibrium con-
formation xk+1 = xk δxk can be computed using Newton’s
method:

minimize δ δ δ δ δE K Lk k
T

k
T

kk k
= −

1

2
x x xx x (21)

subject to Bδxk = 0.
The constrained minimum can be computed by solving

the associated variational equation directly or by applying a
relaxation method such as Uzawa’s algorithm to a suitably
augmented version [11]. The variational equation we get is
linear: [12, 13]:

K B

B

L
k k

T
kx xx

u0 0
















 =









δ δ
(22)

Since the quadratic expansion of the total potential en-

ergy $Ek+1  in general ignores higher order terms in the local

region of xk, several Newton iterations are needed to con-
verge to the true equilibrium conformation xk+1.

Figure 5 Calcium binding protein—calmodulin (from PDB)
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Modeling experiments

Numerical analysis

From the numerical computation point of view, the major
significance of our approach is the novel parametrisation of
the degrees of freedom in terms of the global translations
and rotations of nodal backbone atoms (in a fixed inertial
reference frame). Such a parametrisation has significant ad-
vantages, especially for problems involving large conforma-
tional changes.

First, it decouples the movements of the atoms (in terms
of the degrees of freedom) along the chain of the protein
backbone. To characterise the movement of any atom along
the polypeptide in terms of torsional angles requires all the
torsional angles prior to that atom. In our parametrisation,
however, the independent degrees of freedom are those of
the nodal backbone atoms. A pair of successive nodal atoms
along the protein backbone (separated by nine backbone
bonds) define a (directed) computational element. The move-
ment of any atom can be uniquely determined by the transla-
tional and rotational displacements of the two nodal atoms
of the specific element on which that atom lies. Thus, all the

atom movements are fully decoupled and the transformation
matrix, as shown in Figure 3, is banded with column block
width 12.

Specifically, what this means is that we have reduced the
degrees of freedom (d.o.f.) of the entire protein to that of the
nodal backbone atoms only. Decoupling means that every
atom is ‘tied to’ (i.e., its motion is completely determined
by) exactly one pair of nodal atoms which define a computa-
tional element, and is independent of the motion of any other
nodal atoms.

Second, this decoupling has the important consequence
that the resulting stiffness matrix of the d.o.f. of the set of
nodal atoms is relatively sparse, since non-zero entries arise
from the nodal d.o.f. of pairwise interacting computational
elements only: each atom motion can be easily pulled back
to that of the nodal atoms of its computational element through
the transformation matrix.

If we look at the form of the stiffness matrix K, it is obvi-
ous that the total stiffness matrix will be a full matrix in terms
of torsional angle coordinates. In terms of our set of nodal
degrees of freedom, however, it has a special form (see Fig-
ure 4). The torsional stiffness matrix Ktor is strictly banded
with bandwidth 12. Some off-diagonal blocks are introduced
due to hydrogen bond potentials and van der Waals poten-
tials. Even so, the total stiffness matrix is relatively banded

Figure 6 Calmodulin-pep-
tide complex (from PDB)
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Figure 7 Calmodulin-pep-
tide complex with one dis-
tance constraint  (simulation
result)

Figure 8 Contacts between calmoduin and the peptide

with some off-diagonal blocks and it is thus quite sparse.
The sparsity leads to fast computation in solving the linearly
constrained quadratic minimisation problem and results in a
major improvement in computational efficiency. Although
there have been many papers which aim to reduce the set of
d.o.f. (see [14], for example), we have not seen elsewhere the
decoupling technique we have described here, and we be-
lieve that this is an important contribution.

There are three major time consuming parts in the com-
putation: collision detection, formation of the transforma-
tion matrix and the total stiffness matrix, and the solving of
the linear system for the linear constraint quadratic minimi-
sation. Among these three, the latter two parts are relatively
computationally more expensive. We use a fast collision de-
tection algorithm with linear complexity O(n) where n is the
number of atoms. The collision detection is only performed
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in the first iteration of every distance constraint increment. It
further reduces the overall computation. The complexity of
formation of the transformation matrix and the total stiffness
matrix is also linear in the number of atoms. As they are fully
decoupled with the global parametrisation, however, parallel
and concurrent processing techniques can be used. To solve
the linear system, we use least squares solvers from standard
numerical libraries. Taking advantage of the nature of incre-
mental energy minimisation and the specific sparse pattern
of the stiffness matrix, optimal iterative solvers have been
selected.

Calmodulin peptide binding

Calmodulin is a monomeric signal transduction protein con-
sisting of a chain of 148 amino acids that is capable of bind-
ing to up to 4 Ca2+ ions. The molecule is dumbbell-shaped
[15] with an eight-turn solvent-exposed central alpha helix
connecting the two pairs of EF-hand domains (see Figure 5).
The letters E and F denote alpha helices and each EF hand
consists of an alpha helix of about ten residues, a ten-amino-
acid loop, and a second alpha helix. While the presence of
such a long central helix in solution has been questioned,
several lines of evidence suggest that some amino acids within
this region, as well as in both hydrophobic pockets formed
within the EF-hand domains, are critical for target interac-
tion.

The calmodulin-binding regions have been studied in sev-
eral cases and consist of approximately 20 amino acids. Sev-

eral examples of peptides that bind quite tightly to calmodulin
have been revealed. Studies using fluorescence quenching
and photoaffinity labeling indicate that the hydrophobic por-
tions of the peptide are partially buried upon interaction with
calmodulin [16-18]. Experiments with doubly labelled pep-
tides, furthermore, show that both ends of such peptides are
capable of interacting with the two EF-hand domains of
calmodulin simultaneously. This means that the central al-
pha helix has to be structurally flexible for the two lobes of
calmodulin to bind to the target amphipathic peptide.

In our simulation experiment, we study the conformational
change of calmodulin when it binds to a synthesised 26-resi-
due peptide from skeletal-muscle myosin light-chain kinase.
The 3-dimensional structures of both the unbound calmodulin
and the calmodulin peptide complex are from the Protein
Data Bank. The unbound calmodulin is from drosophila
melanogaster expressed in E coli. The calmodulin in the
bound calmodulin peptide complex is also from drosophila
and the peptide is synthesised from rabbit skeletal myosin
light-chain kinase. The 3-dimensional structure (2bbm) de-
termined by multidimensional NMR is shown in Figure 6
[19].

The 3-dimensional structure of the calmodulin peptide
complex is roughly a compact ellipsoid. All eight helices of
calmodulin ( A to D in the N-lobe and E to H in the C-lobe)
are in close proximity to the peptide and wrap around it.

To begin, we first apply just one distance constraint be-
tween a pair of atoms (near the centres) in the N-lobe and in
the C-lobe respectively. In other words, we try to pull the two
lobes of the calmodulin closer to each other. The simulation

Figure 9 Calmodulin-pep-
tide complex (simulation re-
sult)
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result is shown in Figure 7. It has features roughly similar to
the calmodulin-peptide complex (Figure 6) and shows how
the long central helix serves as an expansion joint. It is also
observed that the two lobes are not directly approaching each
other. There are significant relative rotations (around 90 de-
grees) between the two lobes. This is exactly a major feature
in the three dimensional structure of the bound calmodulin-
peptide from the Protein Data Bank.

With more careful analysis, it is found that there are ex-
tensive interactions between calmodulin and the peptide dur-
ing the binding. All seven basic residues of the peptide make
salt bridges with calmodulin. It is thus more reasonable to
introduce distance constraints between calmodulin and the
peptide. Figure 8 shows the close contacts between calmodulin
and the peptide. We have chosen 24 such distance constraints
based on the contacts. This small set of 24 distance constraints
(compared to the approximately 1,000,000 possible distances
or atom pairs that can be chosen between calmodulin and the
peptide from the PDB data for the calmodulin-peptide com-
plex) is applied incrementally as discussed earlier to ‘drive’
the binding process, so that the corresponding distances even-

tually reach their final values. The values for these 24 dis-
tances have been taken from the bound state conformation in
the PDB. The final configuration (of the entire protein)
reached by the simulation is determined just by these dis-
tance constraints and the interactions we have specified. The
corresponding simulation result is shown in Figure 9. Figure
10 is a motion-blur figure of one intermediate conformation.

The simulation result is very close to the three dimen-
sional structure of the bound calmodulin-peptide from Pro-
tein Data Bank. There are only minor differences in the lobes,
and the large conformational change in calmodulin upon pep-
tide binding is manifested almost completely in the changes
of helix φ and ψ angles of residues 73 to 77. The two lobes
bend about 100 degrees and twist about 120 degrees. There
are about 185 contacts (< 4 Å) between the peptide and
calmodulin. These qualitative observations are the same as
what we get from the analysis of the three dimensional struc-
ture of the bound calmodulin-peptide from Protein Data Bank.
We have also made a quantitative comparsion between the
simulation result and the known data. We compute the differ-
ences of the distances between every corresponding pair of

Figure 10 The motion-blur
picture of calmodulin pep-
tide-binding (simulation re-
sult)
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alpha carbon atoms in our simulation result x and in the ex-
perimentally determined configuration in the Protein Data
Bank, $x :

( ) ( ) ( ) ( )
e r r

C C C C

ij ij ij

i j i j

= −

= − − −

$

$ $x x x xα α α α
(23)

The maximum eij is 1.6Å which is less than the resolution
of the structure obained from NMR. The RMS deviation

( )R
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C C

=
−

∑ 2

1 2

,

α α

(24)

is 0.155Å. Here nCα is the number of alpha carbon atoms.

Cooperative hemoglobin oxygen binding

Hemoglobin, the oxygen-carrying pigment in red blood cells,
has a molecular weight of 64,458 [20, 21]. It has a protein
part, the globin, and four nonprotein heme groups. Normal
adult human hemoglobin (Hb A) consists of four polypeptide
chains - two alpha chains, each containing 141 amino acids,
and two beta chains, each containing 146 amino acids. Each
of these chains is folded around a unit of heme and an atom
of iron. Globin is bound to heme by a coordinated bond link-
ing a histidine (F8 His) and a five-coordinated iron. The sixth
coordinated position of iron can be occupied by a molecule
of oxygen, O2.

Both heme and globin are essential for oxygen transport,
which depends on partial pressure of O2 in the blood. Where
O2 partial pressure is high, as in lungs, hemoglobin binds
oxygen and becomes bright red (oxyhemoglobin — the three-
dimensional structure is shown in Figure 12). Then when oxy-
genated hemoglobin reaches tissues where O2 partial pres-

Figure 11 Deoxygenated hemoglobin (from PDB)
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sure is low, it releases O2 and turns purple (deoxyhemo-globin,
the three-dimensional structure is shown in Figure 11).

The hemoglobin tetramer is formed with two dimers of
α1–β1 and α2–β2. The structure of each subunit is similar and
is also close to the structure of myoglobin. The secondary
structures in hemoglobin are only helices (as shown in Fig-
ure 13) and the β subunit has one more helix (in standard
notation, the helices are labelled A through H) than the α
subunit.

In Perutz’s original work [22], it was noticed that
hemoglobin changes its quaternary structure upon oxygen
binding. The α1–β1 and α2–β2 dimers are symmetrically re-
arranged and one approximately rotates about 12 to 15 de-
grees from the other.

This is an allosteric transition between oxygenated
hemoglobin and deoxygenated hemoglobin and these two
states are both equilibrium states. The T and R structures
(deoxy and oxyhemoglobin respectively) differ in the arrange-

ment of the four subunits (quaternary structure), and in the
conformation of the subunits (tertiary structure).

Based on allostery theory [23], the oxygen binding proc-
ess is cooperative. When oxygen binds to one subunit of a
deoxygenated hemoglobin and transits from T state to R state,
the oxygen binding at other subunits becomes easier. When
one subunit of an oxygenated hemoglobin releases oxygen
and transits from the R state to the T state, the oxygen re-
lease at other subunits also becomes easier. Such cooperative
oxygen binding is vital for the function of hemoglobin as an
oxygen carrier.

The three-dimensional structures of human deoxyhemo-
globin (1hga) and oxyhemoglobin (1hho) that we use are both
from Protein Data Bank using X-ray crystallography at a reso-
lution of 2.4 Å. Before the discussion of the simulation steps,
we first look at some important differences in structure be-
tween deoxyhemoglobin and oxyhemoglobin [24].

• Each α1–β1 and α2–β2 half of the molecule moves roughly
as a rigid body, and the two halves slide over one another.

Figure 12 Oxygenated hemoglobin (from PDB)
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• The structure of the interface between α1 and β1 remains
the same. The α1–β1 interface therefore gives a frame of ref-
erence for the description of tertiary structure changes.

• The translation of the hemes and rotation of the β heme
(relative to the E helix and the α1–β1 interface) removes the
binding site from the vicinity of residue Val E11.

• There is a small movement at the contact between α1 FG
corner and β2 C helix (flexible joint), while there is a large
movement of about 6 Å at the contact between the α1 C helix
and the β2 FG corner (switch region). Each position of the
switch is stabilised by a different set of hydrogen bonds. Other
hydrogen bonds in the two contacts of deoxyhemo-globin
are broken in oxyhemoglobin. The contact region of
deoxyhemoglobin is shown in Figure 14.

• Tilting of the asymmetric proximal histidine F8 is asso-
ciated with a movement of the iron atom towards the heme
plane. It also results in the motion of F helices and FG cor-
ners relative to α1–β1 interface. The enviroment around that
area is shown in Figure 15.

The objective of our simulation is not only to reproduce
the structure of oxyhemoglobin starting from deoxyhemo-
globin, but also to study the possible triggers for such an
allosteric transition. In the literature, there are many hypoth-
eses presented by different researchers about the mechanism
for cooperative oxygen binding.

One possible hypothesis is that the movement of the iron
atom itself acts as trigger [22]. In deoxyhemoglobin, iron is
out of the heme plane and it moves towards the heme plane
when oxygen binds to it. The first simulation we did, there-
fore, was to introduce distance constraints between F8 His
and Val E11 because they come closer together with the iron
movement. But we did not observe any rearrangement of the
quaternary structure. We also fail to observe the allosteric
transition with some other hypotheses [20] for the trigger
mechanism.

Perutz has emphasised the importance of the hydrogen
bonds in the contacts between different dimers [22].
Deoxyhemoglobin is held in its T state mainly by a network
of hydrogen bonds and salt bridges that connect the amino-
and carboxy- terminal regions of both chains. In oxyhemo-
globin, this hydrogen bond network is broken. For consist-
ency checking, we introduced a set of distance constraints to
break these hydrogen bonds. The simulation result reproduces
the cooperative allosteric transition and is very close to (in
the sense of pairwise distances) the configuration from the
Protein Data Bank. It is shown in the upper-right of Figure
16 (upper-left of Figure 16 is the data from the Protein Data
Bank).

To find the real trigger, we noticed that in the absence of
oxygen, the four hemes are in a relaxed, essentially strain-

Figure 13 Structure of he-
moglobin β subunit
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free enviroment with F8 His tilted off-axis, the heme plane
domed toward the F8 His, and an out-of-plane iron atom.
Strain is produced when an oxygen binds on the other side of
the heme, and this strain is transmitted through side chains
and the F helix to the FG corners and to terminal salt bridges
and hydrogen bonds. When the strain becomes great enough,
the molecule shifts from T to R state. The shift relieves the
strain on the already oxygenated heme and also allows
unoxygenated hemes a potential freedom of motion that en-
hances their affinity for oxygen.

Therefore, it is possible that the straightening up of the
tilted F8 helix and the corresponding movement of the F he-
lix might be the trigger. Indeed, the movement of the F-helix
and the FG-corner was found to be produced, in careful mo-
lecular mechanics computations of the heme environment
[25], as a result of the strains arising in the allosteric core
due to change in heme conformation upon ligand binding.
Further, the change in the allosteric core conformation was
found in [25] to produce a tertiary structural change such
that tertiary-tertiary contact regions underwent alterations in
structure in overall accord with experimental observations.
The thermodynamic implications of tertiary structural change
for hemoglobin cooperativity were discussed in [26] and found

to be significant. Thus, tertiary structural change may be taken
to be a trigger for quaternary structural change.

Accordingly, we introduce a set of distance constraints to
simulate such a trigger. There are 16 of them between F-
helix and α1–β1 reference interface in each subunit. These
constraints, which constitute only a very small subset of the
possible atom pairs one can choose from the atoms of the
molecule, are applied incrementally exactly as described ear-
lier for calmodulin. The result is shown in the lower-left of
Figure 16.

The result is remarkably close to the oxygenated
hemoglobin conformation from the Protein Data Bank: de-
fining a pairwise (for every pair of alpha-Carbons) distance
difference between the simulated and experimentally deter-
mined conformations as we did earlier in [23] gives an RMS
distance difference of 0.215 Å.

It is worth emphasising that our results are robust in the
sense that choosing different small sets of distance constraints
between the relevant regions still yield results with small RMS
distance differences from the PDB R-structure conformation.
The important thing seems to be the choice of approximate
regions of interactions in the molecule. Moreover, the simu-
lation reproduces the consequence (in contrast to the previ-
ous simulation experiment, where this was used as an input)

Figure 14 Subunit contact at
α1–β2 interface
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that the hydrogen bond network in deoxyhemo-globin is bro-
ken during the allosteric transition.

To further verify the correctness of our model, we have
done another computational experiment. With the same he-
lix-movement trigger, oxygen binding without the hydrogen
bond network was simulated. This corresponds to a real ex-
periment where the hydrogen bond network is dissolved us-
ing chemical methods [27]. Our result is the same as the real
experiment result: there is no longer any cooperativity for
the binding. As shown in the lower-right of Figure 16, the
four subunits independently expand themselves.

Conclusions

The civil engineering model we have developed does not solve
the protein folding problem. Proteinmorphosis starts with the
given three-dimensional structure of the protein and studies
its conformational changes. It is also important to emphasise

that it is a fully mechanics-based approach to computing con-
formational changes, as opposed to computer animation ap-
proaches [28] that use interpolation between observed initial
and final structures. As shown in this paper, the conforma-
tional changes from our simulation results are realistic and
our approach has a variety of applications in drug design.

There are also many differences between our civil engi-
neering approach and other physically-based molecular mod-
elling systems such as SCULPT [29, 30]. First, the finite el-
ement parametrisation employed in Proteinmorphosis ena-
bles an effective kinematic decoupling of an atom’s incre-
mental movements from those atoms which do not belong to
the corresponding computational element. Second, the present
system uses a (second order) Newton method to solve the
incremental constrained quadratic minimisation problem, in
contrast to the first order gradient descent method which
SCULPT uses. Second order methods are generally more sta-
ble, usually do not require step size adjustments and yield
significantly faster convergence, and we consequently expect
Proteinmorphosis to be a more effective tool for simulating

Figure 15 Possible trigger for the hemoglobin T-R transition
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large changes in conformation. For calmodulin (1374 atoms),
our program achieves 2.5 updates per second on a single proc-
essor of the SGI Infinite Reality and 11.2 updates per second
on two processors of the Cray T94. With about 1000 updates
for the complete conformational change of calmodulin, the
corresponding figures for the entire computation are about 7
minutes and 90 seconds respectively. Finally, SCULPT uses
springs attached to external fixed points in order to apply
external forces. In contrast, Proteinmorphosis applies distance
constraints between atom pairs or pairs of groups of atoms.
This is a more natural mechanism for simulating binding proc-

esses; no external forces are involved. The constraints only
serve to drive the system to a bound state equilibrium; the
constraint forces are small when the final state is reached
and only the intrinsic forces due to interatomic potentials are
present at the end of the process.

It is worth contrasting our model with molecular dynam-
ics methods commonly applied to study protein dynamics.
An all-atom approach, integrated over small time steps (see,
for example, [31]), provides accurate results, albeit at the
cost of enormous computation time for large molecules in-
volving major conformational changes. In contrast, the less

Figure 16 Simulation result of hemoglobin oxygen binding
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detailed, ‘macroscopic’ model we use with its reduced set of
degrees of freedom may seem crude, but has the advantage
of significantly faster computation. Perhaps somewhat sur-
prisingly, it does however produce ‘correct’ conformations,
at least for the examples we have discussed. The key input
for this seems to be the choice of ‘reasonable’ sets of inter-
acting regions. In the examples we studied as test cases, the
final structures (experimentally determined) were of course
available to us for picking regions between which to apply
distance constraints. We believe that our model, especially
where cooperativity is involved, is a useful complement to
more detailed and accurate modelling methods in the follow-
ing sense.

First, where a large change in conformation is involved,
local ligand binding effects may be computed effectively with
molecular dynamics. These structural changes produce local
distortions that may be used as an input to our civil engineer-
ing model in order to predict gross conformational changes,
which would be difficult with more detailed models. Second,
one’s knowledge of chemistry may be invoked, perhaps to-
gether with a detailed molecular mechanics model, to define
regions of likely interaction between proteins and other pro-
tein or drug molecules, especially where the presence of flex-
ible regions can result in significant changes in conforma-
tion. Again, this region identification serves as an input to
our model which may be usefully employed to predict final
structure. Third, one can easily include dynamics in our mac-
roscopic model in order to make an initial study of protein
dynamics and to gain an understanding of low energy modes.

The main contributions of our mechanical model for pro-
tein conformational changes are its conceptual ideas using a
macroscopic civil engineering approach and the efficient glo-
bal parametrisation that it employs. The two examples of
calmodulin and hemoglobin serve to validate our model. Po-
tential biomedical applications of Proteinmorphosis in the
near future include problems such as rational drug design.

Appendix

The algorithm for collision detection, referred to in Section
2, is developed based on three facts. First, a cube is a good
approximation to a sphere. Checking the collision between
two spherical atoms can be simplified by checking the colli-
sion between two cubes (voxels) whose widths equal the di-
ameters of the associated atoms. This approach will not miss
any collisions. Second, for each atom, only a small number
of atoms fit within its cutoff distance because each atom’s
electron shell occupies a nonzero volume. A very conserva-
tive bound on the number of collisions to the atom is the
division between 8R3

cut, the cutoff volume, and the volume of
the smallest atom. The limited number of collisions per atom
is also a consequence of the 1-dimensional nature of the pro-
tein polypeptide chain. Third, the sizes of the atoms do not
differ by very much. In protein molecule, there are only five
types of atoms, i,e, C(carbon), S(sulphur), H(hydrogen),
N(nitrogen) and O(oxygen). Hydrogen has the smallest van

der Waals radius of around 1 Å. The sulphur atom is some-
what larger but it does not occur very often and the rest have
almost the same van der Waals radius.

The collision detection starts with dividing the space con-
taining the whole protein molecule into voxels by imposing
a uniform 3-dimensional grid on it. If an atom occupies part
of a voxel, that voxel is marked as being occupied either par-
tially or wholly by the atom. If the voxel has already been
marked by another atom, an exact comparison is made be-
tween the two atoms. A voxel may be marked by more than
one atom. An atom may mark more than one voxel.

The most critical issue here is to choose the proper size of
grid. On one hand, the grid should be as small as possible so
that the likelihood of a real collision is high when two atoms
mark the same voxel. On the other hand, we want the grid to
be as large as possible so that every atom has to mark very
few voxels. In our case, we make a trade-off to choose the
van der Waals radius of the oxygen atom as the grid size. It is
easy to verify that the algorithm takes O(n) steps.
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